THE EU RL ECVAM SEARCH GUIDE

CHECK LIST
for Searching Information on Alternative Methods

Annett J. Roi, Barbara Grune

STEP 1. INFORMATION NEED

☐ Clearly define your specific information need:

STEP 2. COMPONENTS OF YOUR APPROACH

☐ Identify the fundamental components of your scientific approach.
   a. Field of investigation:
   b. Specific objective(s):
   c. Methods/Models:

STEP 3. APPROPRIATE INFORMATION RESOURCES

☐ Define the most appropriate information resources.
   a. Value-added:
   b. Limitable (to a 3Rs-subset of documents) broad coverage: indicate what limitations you plan to use (e.g. MeSH-term-based: animal use alternatives).
   c. Unlimited broad coverage.
STEP 4. RELEVANT SEARCH TERMS

☐ Compile the search terms that best describe your scientific objectives and approach, and need for 3Rs information. Select terms with appropriate levels of specificity/breadth. Consider thesaurus terms, and advanced queries.

a. Field of investigation:

b. Objective(s):

c. Methods/Models:

STEP 5. START YOUR SEARCH WITH A SIMPLE QUERY IN A 3Rs SPECIFIC CONTEXT

☐ Start your search in value-added 3Rs sources, trying out different search terms within a simple query, and browsing through the inventory (classification scheme) if available.

☐ Evaluate the documents retrieved. Is there information on alternative method(s) that are suitable to reach the scientific purpose of your approach, are there potentially better search terms?

STEP 6. LIMIT SEARCH RESULTS FROM MORE EXTENSIVE RESOURCES

☐ If no information on suitable alternatives is found using the value-added sources, continue your search using limitable broad coverage sources.

☐ Try different kinds of 3Rs-relevant limitations (e.g. MeSH-term-based, journal-based etc) to limit the results to relevant and manageable lists of documents. Evaluate the results and consider if it is possible to improve your query by adding varying search terms and Boolean operators.

☐ Evaluate the most relevant documents retrieved.

STEP 7. BROADEN THE SEARCH HORIZON

☐ If no suitable alternative was retrieved by restricting the search by predetermined 3Rs-relevant limitations, repeat step 5 in broader coverage resources with more general limitations consistent with your scientific methodology and objectives.

☐ Evaluate the documents retrieved.
START YOUR SEARCH WITH A SIMPLE QUERY IN A 3Rs SPECIFIC CONTEXT

Efficient and effective searches follow a systematic and structured routine; they capitalise on efforts that have already been made to structure information and add expert input. These efforts create “islands” of well-defined and structured information within an “ocean” of inhomogeneous raw information illustrated in the figure below – and a sound searching strategy targets these resources.

LIMIT SEARCH RESULTS FROM MORE EXTENSIVE RESOURCES

In the event that added-value databases are not suited to your needs, then you should use a lower ranking, broader coverage, biomedical database. Always choose one that allows you to use appropriate tools to limit the pool of searchable documents to the subset relevant to the 3Rs.

Using 3Rs-relevant thesaurus-derived terms (see Section Thesauri with Relevance to the 3Rs Principle, p. 61) in an advanced mode query (see Section Basic Search Principles, p. 52) will only retrieve documents that have been assigned to the respective headings by professional indexing systems.

Example: In November 2012 the thesaurus-derived search term animal use alternatives (MeSH) yielded 2,600 3Rs-related documents in PubMed. Such relatively non-specific (regarding a specific scientific objective) list of nevertheless relevant documents can be made shorter and more specific by then using search terms addressing the respective objective. To experience the full potential of MeSH-terms PubMed provides the option to search the MeSH-tree (http://www.ncbi.nlm.nih.gov/mesh?itool=sidebar, Accessed November 8, 2012), (see p. 63) This identifies the most appropriate MeSH-terms for the topic of interest, and then uses these to search PubMed. The product is a list of topic-restricted documents. Most search engines provide options to arrange this list in different ways. In PubMed, you can sort documents according to publication date, journal, author name or title. Arranging the documents according to the publishing journal, allows to focus on those derived search term publication year, publication type etc.)

At this stage the content of the retrieved and sorted documents has to be examined by scanning the title, the abstract and keywords. Remember the main limitations of “abstract-only” documents as outlined on page 95 (Volume “Data Sheets, p. 3).

As you objective is to efficiently and effectively retrieve quality customised information about relevant alternative methods, your starting point will typically be a value-added 3Rs specific database. The number of available documents in these databases is easy to handle (sometimes < 1,000), the context is already assumed and some expert review has already taken place, and the resulting searching strategy and selection of search terms is relatively straightforward.

Sometimes all that may be necessary to obtain all you need is simply trying out several search terms, or even just browsing through the inventory. In cases your information needs may be satisfied at this point.

BROADEN THE SEARCH HORIZON

Too little information?
If you get this far, but have found little or no relevant information for your specific information need you then stop and think about possible deficiencies in your search. Some of the commoner problems include:

(a) selecting search terms which are too specific, or having chosen the most unusual synonyms

(b) inappropriate usage of Boolean operators, context operators or parenthesis

(c) bring too prescriptive about search limitations (e.g. publication year, publication type etc.)

The most relevant documents of the first list may render some clues for an improved search terminology.

Having reflected on the reasons for too little (just as in the case of retrieving too much) information, you will be in a good position to conduct a supplementary search.

Techniques to improve the completeness of a search include broadening the search horizon by using larger sources of information, and lessening the document to be excluded from the search. Repeat Step 6 in the broad coverage resources with fewer limitations.

You might then proceed to resources with even broader coverage (e.g. meta-databases). You may ultimately end up combining previously successful search terms using either a more general database or an all-purpose biomedical database. Make sure you also find a way of specifying the appropriate context. Also consider limiting the documents as described, or make use of innovative semantic search tools like “Go3R” (see Section Basic Search Principles, p. 52) will

If you get this far, but have found little or no relevant information for your specific information need you then stop and think about possible deficiencies in your search. Some of the commoner problems include:

(a) selecting search terms which are too specific, or having chosen the most unusual synonyms

(b) inappropriate usage of Boolean operators, context operators or parenthesis

(c) bring too prescriptive about search limitations (e.g. publication year, publication type etc.)

The most relevant documents of the first list may render some clues for an improved search terminology.

Having reflected on the reasons for too little (just as in the case of retrieving too much) information, you will be in a good position to conduct a supplementary search.

Techniques to improve the completeness of a search include broadening the search horizon by using larger sources of information, and lessening the document to be excluded from the search. Repeat Step 6 in the broad coverage resources with fewer limitations.

You might then proceed to resources with even broader coverage (e.g. meta-databases). You may ultimately end up combining previously successful search terms using either a more general database or an all-purpose biomedical database. Make sure you also find a way of specifying the appropriate context. Also consider limiting the documents as described, or make use of innovative semantic search tools like “Go3R” (see Section Basic Search Principles, p. 52).

You might then proceed to resources with even broader coverage (e.g. meta-databases). You may ultimately end up combining previously successful search terms using either a more general database or an all-purpose biomedical database. Make sure you also find a way of specifying the appropriate context. Also consider limiting the documents as described, or make use of innovative semantic search tools like “Go3R” (see Section Basic Search Principles, p. 52).
Identify the Fundamental Components of Your Scientific Approach

Any search for specific information starts with a sheet of paper! Before using the computer to access search engines or database hosts, the specific scientific objectives being pursued, and all the potential strategies and methods of achieving these objectives need to be clearly defined and committed to paper. This is part of the prospective planning of your search.

Field of Investigation

The specific field of investigation (e.g., animal health, risk assessment, education, or gene function studies) is relevant to the choice of preferred information sources. Therefore, begin by considering the coverage of different sources in relation to your field of investigation and information need (see Step 3). Individual sources generally focus on certain fields and are weak in others.

Objectives

Relevant search terms cannot be selected until the specific objectives of a research project are clearly defined. Focusing at this stage on the scientific objectives rather than the preferred animal model, allows for variations and derivations of a given methodical approach. As a result, the documents found are likely to be a particularly good source of reduction and refinement options. In a 3Rs specific search environment however, method-derived search terms can also be used to target replacement methods developed to substitute for the relevant animal methods.

Choose the Most Appropriate Information Resources

The choice of information sources follows the information needs being defined. Appropriate added-value resources should always be the first choice, these provide information evaluated by experts in a systematic fashion, making it easier to retrieve the documents most suited to your needs.

Section Information Resources — General Considerations (see EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 28) introduces 3Rs-relevant information resources categorised according to the quality and type of information they contain. The information resource inventories in Section Information Resources — Inventories and Tables (see The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 34) provide clearly presented overviews to assist in choosing the best information resources for particular information needs.

To support scientists find and evaluate relevant 3Rs information, Section Information Resources of the EURL ECVAM Search Guide Volume "Data Sheets" offers structured offers structured summaries of the most important features of key information resources for different classes of animal use.
Search Terms and their Use (Page 54).

Level of Knowledge and the State of the Art
An essential part of the planning of any research or testing programme is gathering and reviewing available information about the current level of knowledge about the specific research objective, potential research strategies and methods – with the view to identifying and making appropriate use of appropriate methods to replace, reduce or refine proposed animal use. Unless and until this has been done, documentation cannot be prepared for evaluation for funding, local ethical approval, or national regulatory approval.

Indispensability
When a research proposal involving the use of animals requires regulatory approval, the onus is on the applicant to exercise due diligence with respect to demonstrating that all reasonable efforts have been made to find and take account of 3Rs opportunities. The key aims of information searches undertaken at the planning stage is to both determine the availability and suitability of alternatives, and provide evidence to make the case that the proposed animal use is the most humane way of meeting the scientific objectives.

An animal experiment to achieve any defined scientific objective cannot be deemed to be indispensable unless and until the non-availability of suitable alternatives is established.

Scientists have to supply information on the non-availability of alternative methods according to the 3Rs principle (see Annex I - Legal Background for Information Requirements, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 113). In addition they may have to justify why some seemingly relevant alternatives are not suitable.

To support scientists find and evaluate relevant 3Rs information Section Information Resources of the EURL ECVAM Search Guide Volume "Data Sheets" allows a structured approach to retrieving documents that report variations and derivations of a given methodical approach. As a result the documents found are likely to be a particularly good source of reduction and refinement options. In a 3Rs specific search environment however, method-derived search terms can also be used to target replacement methods developed to substitute for the relevant animal methods.

Scientists have to supply information on the non-availability of alternative methods according to the 3Rs principle (see Annex I - Legal Background for Information Requirements, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 113). In addition they may have to justify why some seemingly relevant alternatives are not suitable.

Any search for specific information starts with a sheet of paper!

Before using the computer to access search engines or database hosts, the specific scientific objectives being pursued, and all the potential strategies and methods of achieving these objectives need to be clearly defined and committed to paper. This is part of the prospective planning of your search.

Field of Investigation
The specific field of investigation (e.g. animal health, risk assessment, education, or gene function studies) is relevant to the choice of preferred information sources. Therefore, begin by considering the coverage of different sources in relation to your field of investigation and information need (see Step 3) individual sources generally focus on certain fields and are weak in others.

Objectives
Relevant search terms cannot be selected until the specific objectives of a research project are clearly defined. Focusing at this stage on the scientific objectives rather than on the preferred animal model, allows for search queries that will also elicit information on different methodical approaches, particularly replacement options, potentially relevant to the defined scientific objective but not previously known to the enquirer.

Methods and Models
A specification of the strategy, study design and the models used helps in deducing relevant search terms. In contrast to scientific objective-derived search terms, method-derived terms are particularly relevant retrieving documents that report variations and derivations of a given methodical approach. As a result the documents found are likely to be a particularly good source of reduction and refinement options. In a 3Rs specific search environment however, method-derived search terms can also be used to target replacement methods developed to substitute for the relevant animal methods.

The choice of information sources should always be the first choice; these provide information evaluated by experts in a systematic fashion, making it easier to retrieve the documents most suited to your needs.

Section Information Resources – General Considerations (see EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 28) introduces 3Rs-relevant information resources categorised according to the quality and type of information they contain. The Information Resource Inventories in Section Information Resources; Inventories and Tables (see The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 34) provide clearly presented overviews to assist in choosing the best information resources for particular information needs.

To support scientists find and evaluate relevant 3Rs information Section Information Resources of the EURL ECVAM Search Guide Volume "Data Sheets" offers structured options which track the most important features of key information resources for different classes of animal use.

When a research proposal involving the use of animals requires regulatory approval, the onus is on the applicant to exercise due diligence with respect to demonstrating that all reasonable efforts have been made to find and take account of 3Rs opportunities. The key aims of information searches undertaken at the planning stage is to both determine the availability and suitability of alternatives, and provide evidence to make the case that the proposed animal use is the most humane way of meeting the scientific objectives.

An animal experiment to achieve any defined scientific objective cannot be deemed to be indispensable unless and until the non-availability of suitable alternatives is established.

Scientists have to supply information on the non-availability of alternative methods according to the 3Rs principle (see Annex I - Legal Background for Information Requirements, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 113). In addition they may have to justify why some seemingly relevant alternatives are not suitable.
**CLEARLY DEFINE AND BE AWARE OF YOUR SPECIFIC INFORMATION NEED**

**Level of Knowledge and the State of the Art**
An essential part of the planning of any research or testing programme is gathering and reviewing available information about the current level of knowledge about the specific research objective, potential research strategies and methods—with a view to identifying and making appropriate use of appropriate methods to replace, reduce or refine proposed animal use. Unless and until this has been done, documentation cannot be prepared for evaluation for funding, local ethical approval, or national regulatory approval.

**Indispensability**
When a research proposal involving the use of animals requires regulatory approval, the onus is on the applicant to exercise due diligence with respect to demonstrating that all reasonable efforts have been made to find and take account of 3Rs opportunities.

The key aims of information searches undertaken at the planning stage is to both determine the availability and suitability of alternatives, and provide evidence to make the case that the proposed animal use is the most humane way of meeting the scientific objectives.

An animal experiment to achieve any defined scientific objective cannot be deemed to be indispensable unless and until the non-availability of suitable alternatives is established.

Scientists have to supply information on the non-availability of alternative methods according to the 3Rs principle (see Annex I - Legal Background for Information Requirements, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 113). In addition they may have to justify why some seemingly relevant alternatives are not suitable.

**IDENTIFY THE FUNDAMENTAL COMPONENTS OF YOUR SCIENTIFIC APPROACH**

Any search for specific information starts with a sheet of paper!

**Before using the computer to access search engines or database hosts, the specific scientific objectives being pursued, and all the potential strategies and methods of achieving these objectives need to be clearly defined and committed to paper. This is part of the prospective planning of your search.**

**Field of Investigation**
The specific field of investigation (e.g. animal health, risk assessment, education, or gene function studies) is relevant to the choice of preferred information sources. Therefore, begin by considering the coverage of different sources in relation to your field of investigation and information need (see Step 3). Individual sources generally focus on certain fields and are weak in others.

**Objectives**
Relevant search terms cannot be selected until the specific objectives of a research project are clearly defined. Focusing at this stage on the scientific objectives rather than the preferred animal model, allows for search queries that will also elicit information on different methodical approaches, particularly replacement options, potentially relevant to the defined scientific objective but not previously known to the enquirer.

**Methods and Models**
A specification of the strategy, study design and the models used also helps in deducing relevant search terms. In contrast to scientific objective-derived search terms, method-derived terms are particularly relevant retrieving documents that report variations and derivations of a given methodical approach. As a result the documents found are likely to be a particularly good source of reduction and refinement options. In a 3Rs specific search environment however, method-derived search terms can also be used to target replacement methods developed to substitute for the relevant animal methods.

**CHOOSE THE MOST APPROPRIATE INFORMATION RESOURCES**

The choice of information sources follows the information needs being defined.

Appropriate added-value resources should always be the first choice. These provide information evaluated by experts in a systematic fashion, making it easier to retrieve the documents most suited to your needs.

Section Information Resources — General Considerations (see EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 28) introduces 3Rs-relevant information resources categorised according to the quality and type of information they contain. The Information Resource Inventories in Section Information Resources: Inventories and Tables (see The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 34) provide clearly presented overviews to assist in choosing the best information resources for particular information needs.

To support scientists find and evaluate relevant 3Rs information Section Information Resources of the EURL ECVAM Search Guide Volume "Data Sheets" offers structured offers structured summaries of the most important features of key information resources for different classes of animal use.

**COMPILE RELEVANT AND NECESSARY SEARCH TERMS**

Search terms are chosen according to their relevance and specificity.

Ideally relevant terms must also be unique identifiers of the basic components of your scientific approach (see Step 2) to discriminate it from similar but non-relevant approaches.

You need consider when and whether to employ combinations of search terms, predetermined by context (with information resource):

(a) If you have chosen a 3Rs specific resource, further addition of “3Rs-topic-defining-terminology” (see Section Search Terms and their Use, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 54) to context-dependent terms is unnecessary as the context of your search is already assumed by the resource.

(b) If you prefer resources that cover a wide variety of the biomedical literature you will have to limit your search to that subset of documents categorised as relevant to the 3Rs by expert review (see Section Basic Search Principles, advanced mode, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 52). Thereafter, the deployment of additional “3Rs-topic-defining-terminology” is unnecessary.

(c) In “broad-coverage” environments which do not have an established 3Rs category, context-dependent terms must be combined with 3Rs-topic-definers.

(d) In some circumstances combinations of context-dependent terms only may be tried in an attempt to target potentially relevant information that stems work not otherwise associated with the 3Rs. With this method there is no certainty that relevant material will be found – but you can be sure that much which is irrelevant will be found.

Advice on proven “3Rs-topic-defining-terms” and “context-dependent terms” are given in Section Search Terms and their Use (Page 54).
Level of Knowledge and the State of the Art

An essential part of the planning of any research or testing programme is gathering and reviewing available information about the current level of knowledge about the specific research objective, potential research strategies and methods — with a view to identifying and making appropriate use of appropriate methods to replace, reduce or refine proposed animal use. Unless and until this has been done, documentation cannot be prepared for evaluation for funding, local ethical approval, or national regulatory approval.

Indispensability

When a research proposal involving the use of animals requires regulatory approval, the onus is on the applicant to exercise due diligence with respect to demonstrating that all reasonable efforts have been made to find and take account of 3Rs opportunities.

The key aims of information searches undertaken at the planning stage is to both determine the availability and suitability of alternatives, and provide evidence to make the case that the proposed animal use is the most humane way of meeting the scientific objectives.

An animal experiment to achieve any defined scientific objective cannot be deemed to be indispensable unless and until the non-availability of suitable alternatives is established.

Scientists have to supply information on the non-availability of alternative methods according to the 3Rs principle (see Annex I - Legal Background for Information Requirements, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 113). In addition they may have to justify why some seemingly relevant alternatives are not suitable.

Objectives

Relevant search terms cannot be selected until the specific objectives of a research project are clearly defined. Focusing at this stage on the scientific objectives rather than the preferred animal model, allows for prioritising the broad coverage of different sources in relation to your field of investigation and information need (see Section 3).

Methods and Models

A specification of the strategy, study design and the models used also helps in deducing relevant search terms. In contrast to scientific objective-derived search terms, method-derived terms are particularly relevant as they report variations of a methodological approach. As a result the documents found are likely to be a particularly good source of reduction and refinement options. In a 3Rs specific environment however, method-derived search terms can also be used to target replacement methods developed to substitute for the relevant animal methods.

The choice of information sources follows the information needs being defined.

Appropriate added-value resources should always be the first choice: these provide information evaluated by experts in a systematic fashion, making it easier to retrieve the documents most suited to your needs.

Section Information Resources — General Considerations (see EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 28) introduces 3Rs-relevant information resources categorised according to the quality and type of information they contain. The Information Resource Inventories in Section Information Resources: Inventories and Tables (see The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 34) provide clearly presented overviews to assist in choosing the best information resources for particular information needs.

To support scientists find and evaluate relevant 3Rs information Section Information Resources of the EURL ECVAM Search Guide Volume "Data Sheets" offers structured offers structured summaries of the most important features of key information resources for different classes of animal use.

Search terms are chosen according to their relevance and specificity.

Ideally relevant terms must also be unique identifiers of the basic components of your scientific approach (see Section 2) to discriminate it from similar but non-relevant approaches.

You need consider when and whether to employ combinations of search terms, predetermined by context (with information resource):

(a) If you have chosen a 3Rs specific resource, further addition of “3Rs-topic-defining-terminology” (see Section Search Terms and their Use, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures", p. 54) to context-dependent terms is unnecessary as the context of your search is already assumed by the resource.

(b) If you prefer resources that cover a wide variety of the biomedical literature you will have to limit your search to that subset of documents categorised as relevant to the 3Rs by expert review (see Section Basic Search Principles, advanced mode, The EURL ECVAM Search Guide Volume "Data Retrieval Procedures”, p. 52). Thereafter, the deployment of additional “3Rs-topic-defining-terminology” is unnecessary.

(c) In "broad-coverage" environments which do not have an established 3Rs category, context-dependent terms must be combined with 3Rs-topic-definers.

(d) In some circumstances combinations of context-dependent terms only may be tried in an attempt to target potentially relevant information that stems work not otherwise associated with the 3Rs. With this method there is no certainty that relevant material will be found — but you can be sure that much which is irrelevant will be found.

Advice on proven “3Rs-topic-defining-terms” and “context-dependent terms” are given in Section Search Terms and their Use (Page 54).
START YOUR SEARCH WITH A SIMPLE QUERY IN A 3Rs SPECIFIC CONTEXT

Efficient and effective searches follow a systematic and structured routine; they capitalise on efforts that have already made to structure information and add expert input. These efforts create “islands” of well-defined and structured information within an “ocean” of inhomogeneous raw information illustrated in the figure below – and a sound searching strategy targets these resources.

As your objective is to efficiently and effectively retrieve quality customised information about relevant alternative methods, your starting point will typically be a value-added 3Rs specific database. The number of available documents in these databases is easy to handle (sometimes < 1,000), the context is already assumed and some expert review has already taken place, and the resulting searching strategy and selection of search terms is relatively straightforward.

Sometimes all that may be necessary to obtain all you need is simply trying out several search terms. In even just browsing through the inventory, you may find your information needs may be satisfied at this point.


In the event that added-value databases are not suited to your needs, then you should use a lower ranking, broader coverage, biomedical database. Always choose one that allows you to use appropriate tools to limit the pool of searchable documents to the subset relevant to the 3Rs.

Using 3Rs-relevant thesaurus-derived terms (see Section Thesauri with Relevance to the 3Rs Principle, p. 61) in an advanced mode query (see Section Basic Search Principles, p. 52) will only retrieve documents that have been assigned to the respective headings by professional indexing systems.

Example: In November 2012 the thesaurus-derived search term animal use alternatives (MeSH) yielded 2,600 3Rs-related documents in PubMed. Such relatively non-specific (regarding a specific scientific objective) list of nevertheless relevant documents can be made shorter and more specific by then using search terms addressing the respective objective. To experience the full potential of MeSH-terms PubMed provides the option to search the MeSH-tree (http://www.ncbi.nlm.nih.gov/mesh?itool=sidebar, Accessed November 8, 2012, see p. 63). This identifies the most appropriate MeSH-terms for the topic of interest, and then uses these to search PubMed. The product is a list of topic-restricted documents. Most search engines provide options to arrange this list in different ways. In PubMed, you can sort documents according to publication date, journal, author name or title. Arranging the documents according to the publishing journal, allows to focus on publications from 3Rs relevant journals (see Section Journals of the ECVAM Search Guide Volume: Data Sheets, p. 3).

At this stage the content of the retrieved and sorted documents has to be evaluated by scanning the title, the abstract and the assigned keywords. Remember the main limitations of “abstract-only” documents as outlined on page 95 (Volume “Data Retrieval Procedures”) and remember that when the information source has been working with full text documents that the information has to be evaluated.

As your starting point will typically be a value-added 3Rs specific database, the number of available documents is easy to handle. To ensure that you find relevant information, you should use more advanced search techniques to increase the search horizon by using larger sources (e.g. meta-databases), or make use of innovative internet search engines. Make sure you also find a way of specifying the appropriate context. Also consider limiting the documents as required to the respective headings by professional indexing systems.

B R O A D E N  T H E  S E A R C H  HORIZON

Too little information?

If you get this far, but have found little or no relevant information for your specific information need you then stop and think about possible deficiencies in your search. Some of the common problems include:

(a) selecting search terms which are too specific, or having chosen the most unusual synonyms

(b) inappropriate usage of Boolean operators, context operators or parenthesis

(c) bring too prescriptive about search limitations (e.g. publication year, publication type etc.)

The most relevant documents of the first list may render some clues for an improved search terminology.

Having reflected on the reasons for too little (just as in the case of retrieving too much) information, you will be in a good position to conduct a supplementary search.

Techniques to improve the completeness of a search include broadening the search horizon by using larger sources of information, and lessening the document to be excluded from the search. Repeat Step 6 in the broad coverage resources with fewer limitations.

You might then proceed to resources with even broader coverage (e.g. meta-databases).

You may ultimately end up combining previously successful search terms using either a more general database or an all-purpose internet search engine; make sure you also find a way of specifying the appropriate context. Also consider limiting the documents as described, or make use of innovative semantic search tools like “Go3R” (see Section Web Search Engines of The EURL ECVAM Search Guide Volume: Data Sheets, p. 47).
As your objective is to efficiently and effectively retrieve quality customised information about relevant alternative methods, your starting point will typically be a value-added 3Rs specific database. The number of available documents in these databases is easy to handle (sometimes < 1,000), the context is already assumed and some expert review has already taken place, and the resulting searching strategy and selection of search terms is relatively straightforward.

Sometimes all that may be necessary to obtain all you need is simply trying out several search terms, or even just browsing through the inventory. However, if your information needs may be satisfied at this point.

At this stage the content of the retrieved and sorted documents has to be evaluated by scanning the title, the abstract and the assigned keywords. Remember the main limitations of “abstract-only” documents as outlined on page 95 (Volume “Data Sheets, p. 47).”

In the event that added-value databases are not suited to your needs, then you should use a lower ranking, broader coverage, biomedical database. Always choose one that allows you to use appropriate tools to limit the pool of searchable documents to the subset relevant to the 3Rs.

Example: In November 2012 the thesaurus-derived search term “animal use alternatives” (MeSH) yielded 2,600 3Rs-related documents in PubMed. Such relatively non-specific (regarding a specific scientific objective) list of nevertheless relevant documents can be made shorter and more specific by then using search terms addressing the respective objective.

To experience the full potential of MeSH-terms PubMed provides the option to search the MeSH-tree (http://www.ncbi.nlm.nih.gov/mesh?tn=tail=sidebar, Accessed November 8, 2012). (see p. 63) This identifies the most appropriate MeSH-terms for the topic of interest, and then these to search PubMed. The product is a list of topic-restricted documents. Most search engines provide options to arrange this list in different ways. In PubMed you can sort documents according to publication date, journal, author name or title. Arranging the documents according to the publishing journal, allows to focus on the assigned keywords. Various structured sources (e.g. DB-ALM, AnimAlt-ZEBET) are online. These efforts create “islands” of well-defined and structured resources with fewer limitations on the information to be retrieved. The most relevant documents of the first list may render some clues for an improved search strategy.

Having reflected on the reasons for too little (just as in the case of retrieving too much) information, you will be in a good position to conduct a supplementary search.

Techniques to improve the completeness of a search include broadening the search horizon by using larger sources of information, and lessening the restrictions on the information to be included from the search. Repeat Step 6 in the broad coverage resources with fewer limitations.

You might then proceed to resources with even broader coverage (e.g. meta-databases). You may ultimately end up combining previously successful search terms using either a more general database or an all-purpose internet search engine: make sure you also find a way of specifying the appropriate context. Also consider limiting the documents as described, or make use of innovative semantic search tools like “Go3R” (see Section Web Search Engines of The EURL ECVAM Search Guide Volume: Data Sheets, p. 47).
In the event that added-value databases are not suited to your needs, then you should use a lower ranking, broader coverage, biomedical database. Always choose one that allows you to use appropriate tools to limit the pool of searchable documents to the subset relevant to the 3Rs.

Using 3Rs-relevant thesaurus-derived terms (see Section Thesaurus with Relevance to the 3Rs Principle, p. 61) in an advanced mode query (see Section Basic Search Principles, p. 52) will only retrieve documents that have been assigned to the respective headings by professional indexing systems.

Example: In November 2012 the thesaurus-derived search term animal use alternatives (MeSH) yielded 2,600 3Rs-related documents in PubMed. Such relatively non-specific (regarding a specific scientific objective) list of nevertheless relevant documents can be made shorter and more specific by then using search terms addressing the respective objective. To experience the full potential of MeSH-terms PubMed provides the option to search the MeSH-tree (http://www.ncbi.nlm.nih.gov/mesh?itool=sidebar, Accessed November 8, 2012), (see p. 63) This identifies the most appropriate MeSH-terms for the topic of interest, and then uses these to search PubMed. The product is a list of topic-restricted documents. Most search engines provide options to arrange this list in different ways. In PubMed you can sort documents according to publication date, journal, author name or title. Arranging the documents according to the publishing journal, allows to focus on publications from 3Rs relevant journals (see Section Journals of the ECVAM Search Guide Volume: Data Sheets, p. 3).

At this stage the content of the retrieved and sorted documents has to be evaluated by scanning the title, the abstract and the assigned keywords. Remember the main limitations of “abstract-only” documents as outlined on page 95 (Volume “Data Retrieval Procedures”) and remember that when the information source has been working with full text documents that the information to be evaluated has to be evaluated in the broad coverage resources with fewer limitations.

Sometimes all that may be necessary to obtain all you need is simply trying out several search terms or even just browsing through the inventory. In such a case your information needs may be satisfied at this point.

As your objective is to efficiently and effectively retrieve quality customised information about relevant alternative methods, your starting point will typically be a value-added 3Rs specific database. The number of available documents in these databases is easy to handle (sometimes < 1,000), the context is already assumed and some expert review has already taken place, and the resulting searching strategy and selection of search terms is relatively straightforward.

Efficient and effective searches follow a systematic and structured routine; they capitalise on efforts that have already been made to structure information and add expert input. These efforts create “islands” of well-defined and structured information within an “ocean” of inhomogeneous raw information illustrated in the Figure below – and a sound searching strategy targets these resources.

In the event that added-value databases are not suited to your needs, then you should use a lower ranking, broader coverage, biomedical database. Always choose one that allows you to use appropriate tools to limit the pool of searchable documents to the subset relevant to the 3Rs.

Using 3Rs-relevant thesaurus-derived terms (see Section Thesaurus with Relevance to the 3Rs Principle, p. 61) in an advanced mode query (see Section Basic Search Principles, p. 52) will only retrieve documents that have been assigned to the respective headings by professional indexing systems.

Example: In November 2012 the thesaurus-derived search term animal use alternatives (MeSH) yielded 2,600 3Rs-related documents in PubMed. Such relatively non-specific (regarding a specific scientific objective) list of nevertheless relevant documents can be made shorter and more specific by then using search terms addressing the respective objective. To experience the full potential of MeSH-terms PubMed provides the option to search the MeSH-tree (http://www.ncbi.nlm.nih.gov/mesh?itool=sidebar, Accessed November 8, 2012), (see p. 63) This identifies the most appropriate MeSH-terms for the topic of interest, and then uses these to search PubMed. The product is a list of topic-restricted documents. Most search engines provide options to arrange this list in different ways. In PubMed you can sort documents according to publication date, journal, author name or title. Arranging the documents according to the publishing journal, allows to focus on publications from 3Rs relevant journals (see Section Journals of the ECVAM Search Guide Volume: Data Sheets, p. 3).

At this stage the content of the retrieved and sorted documents has to be evaluated by scanning the title, the abstract and the assigned keywords. Remember the main limitations of “abstract-only” documents as outlined on page 95 (Volume “Data Retrieval Procedures”) and remember that when the information source has been working with full text documents that the information to be evaluated has to be evaluated in the broad coverage resources with fewer limitations.

Sometimes all that may be necessary to obtain all you need is simply trying out several search terms or even just browsing through the inventory. In such a case your information needs may be satisfied at this point.

As your objective is to efficiently and effectively retrieve quality customised information about relevant alternative methods, your starting point will typically be a value-added 3Rs specific database. The number of available documents in these databases is easy to handle (sometimes < 1,000), the context is already assumed and some expert review has already taken place, and the resulting searching strategy and selection of search terms is relatively straightforward.

Efficient and effective searches follow a systematic and structured routine; they capitalise on efforts that have already been made to structure information and add expert input. These efforts create “islands” of well-defined and structured information within an “ocean” of inhomogeneous raw information illustrated in the Figure below – and a sound searching strategy targets these resources.
# TABLE OF ORGANISATIONS CATEGORISED by their Features for the 3Rs and their Type

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Features for the 3Rs</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3R Research Foundation, Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akademie für Tierschutz</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>AltTox.org</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Altweb</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>AWIC</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CAAT</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CARDAM</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Dr Hadwen Trust</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>ECEAE</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>ecopa</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>EPAA</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>ESTIV</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>EURL ECVAM</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
## TABLE OF ORGANISATIONS CATEGORISED by their Features for the 3Rs and their Type

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Research Funding</th>
<th>Research &amp; Validation</th>
<th>Education</th>
<th>Documentation &amp; Information</th>
<th>Newsletter</th>
<th>Communication</th>
<th>Academia</th>
<th>Governmental Organisation</th>
<th>Industry</th>
<th>Joint Organisation</th>
<th>Non-Governmental Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSUS</td>
<td></td>
</tr>
<tr>
<td>ICCVAM</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>IIVS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InterNICHE</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVTIP</td>
<td></td>
</tr>
<tr>
<td>JSAAE</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC3Rs</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKCA</td>
<td></td>
</tr>
<tr>
<td>UCCAA</td>
<td></td>
</tr>
<tr>
<td>UFAW</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>ZEBET</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zet</td>
<td></td>
</tr>
</tbody>
</table>
## THE EURL ECVAM SEARCH GUIDE

### TABLE OF DATABASE FEATURES

<table>
<thead>
<tr>
<th>Database</th>
<th>Agriculture</th>
<th>Biomedicine</th>
<th>Education</th>
<th>Pharmacology &amp; Toxicology</th>
<th>Veterinary medicine</th>
<th>Bibliographic database</th>
<th>Added-value database</th>
<th>Free-of-charge database</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICOLA</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRIS</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTBIB</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AnimAlt-ZEBET</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOSIS Previews</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAB Abstracts</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EURL ECVAM DB-ALM</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBASE</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSVMAs Alternatives in Education Database</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
</tr>
<tr>
<td>LAD</td>
<td>∙</td>
<td></td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDLINE</td>
<td>∙</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORINA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PED</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScienceDirect</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SciSearch</td>
<td>∙</td>
<td>∙</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Table of Journals Relevant to the 3Rs Indexed by Databases and Meta-Databases

<table>
<thead>
<tr>
<th>Journal</th>
<th>AGRICOLA</th>
<th>BIOSIS Previews</th>
<th>CAB Abstracts</th>
<th>EMBASE</th>
<th>MEDLINE</th>
<th>ScienceDirect</th>
<th>SciSearch</th>
<th>PubMed</th>
<th>Scopus</th>
<th>Web of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Approaches to Animal Testing, AATEX</td>
<td></td>
</tr>
<tr>
<td>Alternativen zu Tierexperimenten, ALTEX</td>
<td></td>
</tr>
<tr>
<td>Alternatives to Laboratory Animals, ATLA</td>
<td></td>
</tr>
<tr>
<td>Animal Technology and Welfare ATW</td>
<td></td>
</tr>
<tr>
<td>Animal Welfare Journal</td>
<td></td>
</tr>
<tr>
<td>Institute of Laboratory Animal Resources, ILAR</td>
<td></td>
</tr>
<tr>
<td>Journal of Animal Science, JAS</td>
<td></td>
</tr>
<tr>
<td>Journal of Applied Animal Welfare Science, JAAWS</td>
<td></td>
</tr>
<tr>
<td>Lab Animal</td>
<td></td>
</tr>
<tr>
<td>Laboratory Animals</td>
<td></td>
</tr>
<tr>
<td>Toxicology in vitro</td>
<td></td>
</tr>
</tbody>
</table>